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Abstract
The simple cubic lattice Green function

G(�1, �2, �3;α,w) = 1

(2π)3

×
∫ π

−π

∫ π

−π

∫ π

−π

exp
[−i(�1θ1 + �2θ2 + �3θ3)

]
w − α cos θ1 − cos θ2 − cos θ3

dθ1 dθ2 dθ3

is investigated, where {�1, �2, �3} is a set of integers, w = w1 + iw2 is a
complex variable and α is a real parameter in the interval (0,∞). In
particular, a new and direct method is used to prove that G(2n, n, n;α,w)

and G(n, n, n; 1, w) can be expressed in terms of a product of two 2F1

hypergeometric functions, where n = 0, 1, 2, . . . . In earlier work, Delves
and Joyce obtained these 2F1 product forms by solving complicated fourth-
order linear differential equations of the Fuchsian type. In this paper Fourier
generating functions and a known Lie group addition theorem play crucial roles
in the derivation of the product forms. Many-term recurrence relations are also
derived for G(2n, n, n;α,w) and G(n, n, n;α,w).

PACS numbers: 02.20.−a, 02.30.Gp

1. Introduction

In this paper we shall consider the simple cubic lattice Green function

G(�1, �2, �3;α,w) = 1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

exp
[−i(�1θ1 + �2θ2 + �3θ3)

]
w − α cos θ1 − cos θ2 − cos θ3

dθ1 dθ2 dθ3 (1.1)

where {�1, �2, �3} is a set of integers, w = w1 + iw2 is a complex variable and α is a real
nonzero parameter in the interval (−∞,∞) (see Berlin and Kac (1952), Montroll and Potts
(1955), Montroll (1956), Maradudin et al (1960), Katsura et al (1971), Joyce (1973), Delves
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and Joyce (2001), Kobelev and Kolomeisky (2002), Joyce et al (2003)). It is readily seen
from (1.1) that

G(�1, �2, �3;−α,w) = (−1)�1G(�1, �2, �3;α,w). (1.2)

We shall, therefore, restrict our attention to the case α ∈ (0,∞). It should also be noted that
G(�1, �2, �3;α,w) is an even function of the integer variables {�1, �2, �3}.

The triple integral (1.1) defines a single-valued analytic function G(�1, �2, �3;α,w) in
the complex (w1, w2) plane provided that a cut is made along the real axis from w = −2 − α

to w = 2 + α. We shall denote the set of points (w1, w2) in this cut plane by C−. For many
applications in solid-state physics (Koster and Slater 1954, Wolfram and Callaway 1963,
Katsura et al 1971) one requires the limiting behaviour of G(�1, �2, �3;α,w) as w approaches
the upper and lower edges of the cut in the (w1, w2) plane. It is convenient, therefore, to
introduce the definitions

G±(�1, �2, �3;α,w1) = lim
ν→0+

G(�1, �2, �3;α,w1 ± iν) (1.3)

where −2 − α < w1 < 2 + α.
Recently, Delves and Joyce (2006) have shown that the function G(2n, n, n;α,w)

can be expressed in terms of a product of two hypergeometric functions of the type
2F1
(

1
4 , 3

4 ; n + 1; η±
)
, where n = 0, 1, 2, . . . , and η± ≡ η±(α,w) are algebraic functions of

(α,w). This product form was obtained by first proving that wG(2n, n, n;α,w) is a solution
of a fourth-order linear differential equation of the Fuchsian type with seven regular singular
points. It was then shown that any solution of this differential equation could be written in
terms of a product of solutions of two second-order differential equations in normal form.
Finally, Schwarzian transformation theory was used to solve the second-order differential
equations in terms of 2F1 hypergeometric functions. Similar methods have also been used by
Joyce and Delves (2004) to demonstrate that G(n, n, n; 1, w) can be evaluated in terms of a
product of two hypergeometric functions of the type 2F1

(
1
3 , 2

3 ; n + 1; ξ±
)
, where ξ± ≡ ξ±(w)

are algebraic functions of w.
Our main aim in this paper is to develop a new and direct method for deriving the 2F1

product forms for G(2n, n, n;α,w) and G(n, n, n; 1, w). In section 2 we shall first determine
an exact formula for the Fourier generating function

F2,1(ψ, α,w) =
∞∑

n=−∞
G(2n, n, n;α,w)	n (1.4)

where 	 = exp(iψ). From this result we obtain the integral representation

G(2n, n, n;α,w) = 1

π

∫ π

0
F2,1(ψ, α,w) cos(nψ) dψ. (1.5)

Next a known Lie group addition theorem (Miller 1968) is used to establish a new
integration formula which enables one to express (1.5) in the required 2F1 product form.
A similar procedure is used in section 3 to obtain the 2F1 product form for G(n, n, n; 1, w).
Finally, in section 4 many-term recurrence relations are derived for G(2n, n, n;α,w) and
G(n, n, n;α,w).

2. Results for G(2n, n, n; α, w)

In this section we shall illustrate the new method by deriving the 2F1 product form for
G(2n, n, n;α,w).
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2.1. Fourier generating function F2,1(ψ, α,w)

We begin by defining the more general Fourier generating function

Fλ1,λ2(ψ, α,w) ≡
∞∑

n=−∞
G(λ1n, λ2n, n;α,w) exp(inψ) (2.1)

where λ1, λ2 = 0, 1, 2 . . . , and λ1, λ2 have no common factors. Next, we introduce the Fourier
series

fλ1,λ2(ψ, α,w; θ1, θ2) =
∞∑

n=−∞
exp(inψ)

1

2π

∫ π

−π

exp(−inθ)fλ1,λ2(θ, α,w; θ1, θ2) dθ (2.2)

where

fλ1,λ2(ψ, α,w; θ1, θ2) ≡ [w − α cos θ1 − cos θ2 − cos(ψ − λ1θ1 − λ2θ2)
]−1

. (2.3)

The integration variable in (2.2) is now changed from θ to θ3 using the substitution
θ = θ3 + λ1θ1 + λ2θ2, and then both sides of (2.2) are integrated with respect to θ1 and
θ2 from −π to π . This procedure yields

Fλ1,λ2(ψ, α,w) = 1

(2π)2

∫ π

−π

∫ π

−π

fλ1,λ2(ψ, α,w; θ1, θ2) dθ1 dθ2. (2.4)

For the particular case λ1 = 2, λ2 = 1 it can be shown that F2,1(ψ, α,w) is an odd
function of w which is single-valued and analytic in the w plane provided that |w| > 2 + α. In
order to determine F2,1(ψ, α,w) we shall assume, at least initially, that w is real and positive
with w ∈ (2 + α,∞). After performing the integration over θ2 it is found that

F2,1(ψ, α,w) = 1

2π

∫ π

−π

[
q1(ψ, α,w; θ1)

]− 1
2 dθ1 (2.5)

where

q1(ψ, α,w; θ1) = w2 − 2αw cos θ1 +

[
α2 − 4 cos2

(
ψ

2

)]
cos2 θ1

− 8 sin

(
ψ

2

)
cos

(
ψ

2

)
sin θ1 cos θ1 − 4 sin2

(
ψ

2

)
sin2 θ1. (2.6)

General methods for evaluating trignometric integrals of the type (2.5) have been
developed by Jacobi (1969, p 195). From this work we find that

F2,1(ψ, α,w) = 1√
X+

2F1

(
1

2
,

1

2
; 1; X−

X+

)
(2.7)

where

X± = 1

2

(
w2 + 4 − α2)± 1

2

[
w4 − 2

(
4 + α2)w2 +

(
16 + α4 − 8α2 cos ψ

)] 1
2

(2.8)

are the solutions of the quadratic equation

Q(X;ψ, α,w) ≡ X2 − (w2 + 4 − α2
)
X + 2

(
2w2 − α2 + α2 cos ψ

) = 0. (2.9)

It should be noted that the Jacobi method usually involves solutions {Xj : j = 1, 2, 3} of a
cubic equation. However, for the particular integral (2.5) this cubic equation can be written in
the simpler form XQ(X;ψ, α,w) = 0.

It is possible to simplify (2.7) and extend its range of validity by applying the standard
transformation formula (Erdélyi et al 1953, p 113, equation (34))

2F1

(
1

2
,

1

2
; 1; z

)
= (1 + z)−

1
2 2F1

[
1

4
,

3

4
; 1; 4z

(1 + z)2

]
. (2.10)
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Hence, we obtain

wF2,1(ψ, α,w) =
(

w2

w2 + 4 − α2

) 1
2

2F1

(
1

4
,

3

4
; 1; x4

)
(2.11)

where

x4 ≡ x4(ψ, α,w) = 8

(
2w2 − α2 + α2 cos ψ

)
(
w2 + 4 − α2

)2 . (2.12)

Formula (2.11) is valid in a region D1(ψ, α) of the cut w plane which includes the
neighbourhood |w| > 2 + α. The boundary of D1(ψ, α) lies inside the circle |w| = 2 + α and
consists of a point set S(ψ, α) defined by {w : x4(ψ, α,w) ∈ (�1,∞)}, where

�1 ≡ �1(ψ, α) = Max

[
1,

4

4 − α2 cos2
(

ψ

2

)
]

. (2.13)

The special points w = ±√
α2 − 4 are also on the boundary of D1(ψ, α), and are limit points

of S(ψ, α). When w �∈ D1(ψ, α) it is necessary to replace the 2F1 function in (2.11) by its
analytic continuation on a second Riemann sheet (see Delves and Joyce (2006), p 4130).

Finally, it follows from (2.1) and (2.11) that

wG(2n, n, n;α,w) =
(

w2

w2 + 4 − α2

) 1
2

× 1

π

∫ π

0
2F1

[
1

4
,

3

4
; 1; 8

(
2w2 − α2 + α2 cos ψ

)
(
w2 + 4 − α2

)2
]

cos(nψ) dψ. (2.14)

2.2. Lie Group addition formula given by Miller

Joyce and Delves (2004) have used raising and lowering operators to derive recursion formulae
for the two Heun functions which occur in the product form for G(n, n, n; 1, w). It was noted
that these operators can be related to the generators for the Lie algebra G(1, 0). We shall
now show that an addition formula for the Lie Group G(1, 0) enables one to establish an 2F1

product form for the integral in (2.14).
In the work of Miller (1968) on the representations of the Lie group G(1, 0) it is proved

that the 2F1 hypergeometric function satisfies the addition formula (see Miller (1968), p 160,
equation (5.15))

(1 + b/a)−s(1 + ac)−t (a + 1)kφ

[
s, t; k; (c + b/a)(a + 1)

(1 + b/a)(1 + ac)

]

=
∞∑

j=−∞
ajφ(s, t + j − k; j ; b)φ(s − j, t;−j + k; c) (2.15)

where s, t are arbitrary complex numbers (not integers), k is an integer and

φ(α, β; γ ; z) ≡ 1

�(γ + 1)
2F1(α, β; γ + 1; z) (2.16)

provided that γ �= −N , where N = 1, 2, . . . . For the special case γ = −N it is necessary to
adopt the alternative definition (see Miller (1968), p 325, equation (A.5))

φ(α, β;−N; z) ≡ (α)N(β)N

N !
zN

2F1(N + α,N + β;N + 1; z). (2.17)
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For the purposes of this paper we substitute s = t and k = 0 in (2.15) and make use of
equations (2.16) and (2.17). Hence, we find that(

1 +
b

a

)−t

(1 + ac)−t
2F1

[
t, t; 1; (c + b/a)(a + 1)

(1 + b/a)(1 + ac)

]
= 2F1(t, t; 1; b) 2F1(t, t; 1; c)

+
∞∑

j=1

(−1)j

[
(ac)j +

(
b

a

)j
]

× (t)j (1 − t)j

(j !)2 2F1(t, j + t; j + 1; b) 2F1(t, j + t; j + 1; c). (2.18)

Next the standard transformation (Erdélyi et al 1953, p 105, equation (3))

2F1(α, β; γ ; z) = (1 − z)−α
2F1[α, γ − β; γ ; z/(z − 1)] (2.19)

is applied to all the 2F1 functions in (2.18). This procedure yields the simplified result

2F1

[
t, 1 − t; 1;− (c + b/a)(a + 1)

(1 − b)(1 − c)

]
= 2F1

[
t, 1 − t; 1; b

b − 1

]
2F1

[
t, 1 − t; 1; c

c − 1

]

+
∞∑

j=1

(−1)j

[
(ac)j +

(
b

a

)j
]

(t)j (1 − t)j

(j !)2 2F1

[
t, 1 − t; j + 1; b

b − 1

]

× 2F1

[
t, 1 − t; j + 1; c

c − 1

]
. (2.20)

We now make the substitution a = −(b/c)1/2 exp(iψ) in formula (2.20). Hence, we obtain

2F1

[
t, 1 − t; 1; y(1 − x) + x(1 − y) + 2

√
xy(1 − x)(1 − y) cos ψ

]
= 2F1(t, 1 − t; 1; x) 2F1(t, 1 − t; 1; y)

+ 2
∞∑

j=1

(t)j (1 − t)j

(j !)2

[
xy

(1 − x)(1 − y)

]j/2

× 2F1(t, 1 − t; j + 1; x) 2F1 (t, 1 − t; j + 1; y) cos(jψ) (2.21)

where x ≡ b/(b − 1) and y ≡ c/(c − 1). Formula (2.21) is valid for arbitrary complex
values of (x, y) provided that (x, y) lies in a sufficiently small neighbourhood of the origin
x = y = 0.

It is convenient to introduce the functions

A ≡ A(x, y) = y(1 − x) + x(1 − y) (2.22)

B ≡ B(x, y) = 2
√

xy(1 − x)(1 − y). (2.23)

By solving equations (2.22) and (2.23) we can determine the appropriate algebraic functions
x = x(A,B) and y = y(A,B). These inverse functions enable one to express (2.21) in the
useful alternative form

2F1(t, 1 − t; 1;A + B cos ψ) = 2F1(t, 1 − t; 1;ϑ+) 2F1(t, 1 − t; 1;ϑ−)

+ 2
∞∑

j=1

(t)j (1 − t)j

(j !)2

[
1

2B

(√
1 − A − B − √

1 − A + B
)2
]j

× 2F1(t, 1 − t; j + 1;ϑ+) 2F1(t, 1 − t; j + 1;ϑ−) cos(jψ) (2.24)

where

ϑ± ≡ ϑ±(A,B) = 1

2
± 1

2

√
A2 − B2 − 1

2

√
(1 − A)2 − B2. (2.25)
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Finally, from the restricted Miller addition formula (2.24) we readily obtain the important
result

In(t;A,B) ≡ 1

π

∫ π

0
2F1(t, 1 − t; 1;A + B cos ψ) cos(nψ) dψ

= (t)n(1 − t)n

(n!)2

[
1

2B

(√
1 − A − B − √

1 − A + B
)2
]n

× 2F1(t, 1 − t; n + 1;ϑ+) 2F1(t, 1 − t; n + 1;ϑ−) (2.26)

where ϑ± ≡ ϑ±(A,B) are defined in (2.25). When n = 0 and t = 1
2 this integral formula is

in agreement with the earlier work of Iwata (1969), Rashid (1980), Montaldi (1981) and Joyce
et al (2003). In the appendix it is shown that formula (2.26) can also be derived by generalizing
the method first developed by Iwata (1969). The disadvantage of this alternative more routine
procedure is that it does not give the deeper insight which is provided by the group-theoretic
approach.

2.3. Product form for G(2n, n, n;α,w)

The application of formula (2.26), with t = 1
4 , to the integral in (2.14) yields the required

product form

wG(2n, n, n;α,w) =
(

w2

w2 + 4 − α2

) 1
2
(

1
4

)
n

(
3
4

)
n

(n!)2

×

w2

8α

(√
1 − (2 − α)2

w2
−
√

1 − (2 + α)2

w2

)2



2n

× 2F1

(
1

4
,

3

4
; n + 1; η+

)
2F1

(
1

4
,

3

4
; n + 1; η−

)
(2.27)

where

η± ≡ η±(α,w) = 1

2
+

w2

2
(
w2 + 4 − α2

)2
[
±16

√
1 − α2

w2

− (
w2 − 4 − α2)√1 − (2 − α)2

w2

√
1 − (2 + α)2

w2

]
. (2.28)

The region of validity D(α) in the w plane for (2.27) has been determined by Delves and Joyce
(2006, pp 4130–1) for all α ∈ (0,∞). A detailed discussion of the analytic and asymptotic
properties of (2.27) is also given in this paper.

3. Results for G(n, n, n; α, w)

In this section we shall derive the 2F1 product form for G(n, n, n; 1, w).

3.1. Fourier generating function F1,1(ψ, α,w)

Our main purpose in this subsection is to obtain an exact formula for the general Fourier
generating function

F1,1(ψ, α,w) =
∞∑

n=−∞
G(n, n, n;α,w) exp(inψ) (3.1)
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where α ∈ (0,∞). From (2.4) we find that

F1,1(ψ, α,w) = 1

(2π)2

∫ π

−π

∫ π

−π

1

w − α cos θ1 − cos θ2 − cos(ψ − θ1 − θ2)
dθ1 dθ2. (3.2)

In order to determine (3.2) we shall assume, at least initially, that w is real with
w ∈ (�,∞), where � > 0 is sufficiently large. After performing the integration over
θ2 it is found that

F1,1
(
ψ, α,w

) = 1

2π

∫ π

−π

[
q2(ψ, α,w; θ1)

]− 1
2 dθ1 (3.3)

where

q2(ψ, α,w; θ1) = (w2 − 2 + α2
)− 2(αw + cos ψ) cos θ1 − 2 sin ψ sin θ1 − α2 sin2 θ1. (3.4)

Although it is possible to evaluate the integral (3.3) by applying the method of Jacobi (1969,
p 195), we shall find that it is more useful to convert (3.3) into an elliptic integral by making
the substitution u = tan(θ1/2). In this manner we obtain

F1,1(ψ, α,w) = 1

π

∫ ∞

−∞

(
c0 + 4c1u + 6c2u

2 + 4c3u
3 + c4u

4
)− 1

2 du (3.5)

where

c0 ≡ c0(ψ, α,w) = (w − α)2 − 2(1 + cos ψ) (3.6)

c1 ≡ c1(ψ) = −sinψ (3.7)

c2 ≡ c2(α,w) = 1

3

(
w2 − α2 − 2

)
(3.8)

c3 ≡ c3(ψ) = −sinψ (3.9)

c4 ≡ c4(ψ, α,w) = (w + α)2 − 2(1 − cos ψ). (3.10)

We are now able to use the work of Cayley (1889, 1895) to express (3.5) in the form

F1,1(ψ, α,w) =
[

4

3g2

(
1 + 14x2 + x2

2

)] 1
4

2F1

(
1

2
,

1

2
; 1; x2

)
. (3.11)

In this formula x2 ≡ x2(ψ, α,w) is the appropriate solution of the sextic equation

108x(1 − x)4(
1 + 14x + x2

)3 = 1

J
(3.12)

where

J ≡ J (ψ, α,w) = g3
2

g3
2 − 27g2

3

(3.13)

and

g2 ≡ g2(ψ, α,w) = c0c4 − 4c1c3 + 3c2
2 (3.14)

g3 ≡ g3(ψ, α,w) = c0c2c4 − c0c
2
3 − c2

1c4 − c3
2 + 2c1c2c3. (3.15)

The required solution x2 of equation (3.12) has a Taylor series representation about w = ∞
which is given by

x2 ≡ x2(ψ, α,w) = α2

4w6

∞∑
j=0

dj (ψ, α)

(αw)j
(3.16)



8336 R T Delves and G S Joyce

where d0(ψ, α) = 1,

d1(ψ, α) = (2α2 + 1
)

cos ψ (3.17)

d2(ψ, α) = 1

4

[(
18α4 + 32α2 + 1

)
+ 2α2

(
α2 + 2

)
cos(2ψ)

]
. (3.18)

Cayley (1889, 1895) has proved that the other solutions of equation (3.12) are 1/x2 and


1 − ikx

1
4

2

1 + ikx
1
4

2




4

: k = 0, 1, 2, 3


 . (3.19)

We see, therefore, that x2 ≡ x2(ψ, α,w) is the only solution which tends to zero as w → ∞.
The problem of deriving an explicit closed-form expression for x2 can be avoided by

applying the transformation formula (Goursat 1881, p S.142, equation (136))

2F1

(
1

2
,

1

2
; 1; x

)
= (1 + 14x + x2

)− 1
4

2F1

[
1

12
,

5

12
; 1; 108x(1 − x)4(

1 + 14x + x2
)3
]

(3.20)

to the 2F1 function in (3.11). Hence, we obtain the much simplified result

wF1,1(ψ, α,w) =
(

4w4

3g2

) 1
4

2F1

(
1

12
,

5

12
; 1; 1

J

)
(3.21)

where

g2 = 4

3

[
w4 − 2

(
α2 + 2

)
w2 +

(
α2 − 1

)2 − 6αw cos ψ
]

(3.22)

J = 8

27
(w + α cos ψ)−2

[
w4 − 2

(
α2 + 2

)
w2 +

(
α2 − 1

)2 − 6αw cos ψ
]3

×
[
8α2w4 + 8αw3 cos ψ − 2

(
8α4 + 20α2 − 1

)
w2 − 36αw

(
2α2 + 1

)
cos ψ

+
(
8α6 − 24α4 − 3α2 − 8

)− 27α2 cos(2ψ)
]−1

. (3.23)

When the variable x is real the Goursat transformation (3.20) is valid provided that
− 1

4

(√
3 − 1

)4
< x �

(√
2 − 1

)4
. It is clear from (3.16) that x2 will always satisfy this

restrictive condition when w ∈ (�,∞), where � > 0 is sufficiently large.
A more detailed analysis shows that the final result (3.21) is, in fact, valid in a region

D2(ψ, α) of the cut w plane which includes a neighbourhood of the point w = ∞. The
boundary of D2(ψ, α) consists of a point set defined by {w : [J (ψ, α,w)]−1 ∈ [1,∞)}.
When w �∈ D2(ψ, α) it is necessary to replace the 2F1 function in (3.21) by its analytic
continuation on a second Riemann sheet. We can construct this analytic continuation by first
applying the transformation formula (Erdélyi et al 1953, p 111, equation (10))

2F1

(
a, b; a + b +

1

2
; z

)
= 2F1

(
2a, 2b; a + b +

1

2
; 1

2
− 1

2

√
1 − z

)
(3.24)

to (3.21). Hence, we find that

wF1,1(ψ, α,w) =
(

4w4

3g2

) 1
4

2F1

(
1

6
,

5

6
; 1; 1

2
− 1

2

√
1 − 1

J

)
(3.25)

where g2 ≡ g2(ψ, α,w) and J ≡ J (ψ, α,w) are defined in (3.22) and (3.23), respectively.
This formula is valid for all w ∈ D2(ψ, α). The analytic continuation of wF1,1 on the second
Riemann sheet can now be obtained by simply changing the sign of the square root in (3.25).
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3.2. Product form for G(n, n, n; 1, w)

In order to investigate the existence of an 2F1 product form for G(n, n, n;α,w) we shall now
consider the further transformation formula (Goursat 1881, p S.140, equation (126))

2F1

[
1

12
,

5

12
; 1; 64x3(1 − x)

(9 − 8x)3

]
=
(

1 − 8x

9

) 1
4

2F1

(
1

3
,

2

3
; 1; x

)
. (3.26)

This formula is valid when |x| � 3
4

(
3 − √

3
)
. If we apply (3.26) to the 2F1 function in (3.21)

it is found that

wF1,1(ψ, α,w) =
[

4w4

3g2

(
1 − 8x3

9

)] 1
4

2F1

(
1

3
,

2

3
; 1; x3

)
(3.27)

where x3 ≡ x3(ψ, α,w) is a solution of the quartic equation

64x3(1 − x)

(9 − 8x)3
= 1

J
(3.28)

which tends to zero as w → ∞.
The four solutions of equation (3.28) are expressible in the closed-form

x
(1)
± =


1 +

J
1
3

9


±
√

1 − 1

J
1
3

+

√√√√2

√
1 +

1

J
1
3

+
1

J
2
3

−
(

1 +
2

J
1
3

)
2


−1

(3.29)

x
(2)
± =


1 − J

1
3

9


±i

√
1 − 1

J
1
3

+

√√√√2

√
1 +

1

J
1
3

+
1

J
2
3

+

(
1 +

2

J
1
3

)
2


−1

(3.30)

where J ≡ J (ψ, α,w) is defined in (3.23). It follows from (3.29) and (3.30) that x
(1)
+ and x

(2)
±

all tend to zero as w → ∞. We can, therefore, take any one of these solutions as the required
solution x3. However, it is particularly instructive to associate x3 with x

(1)
+ . We find that the

solution x
(1)
+ has a Taylor series representation about w = ∞ which is given by

x(1)
+ ≡ x3(ψ, α,w) = 27α

2
3

4w2

[
1 +

1

3αw
(2α2 + 1) cos ψ +

∞∑
k=2

ek(ψ, α)

wk

]
(3.31)

where the coefficient ek(ψ, α) is a function of ψ and α.
For general values of α ∈ (0,∞) it is evident from (3.23) and (3.29) that x3 is a

complicated function of (ψ, α,w) which cannot be reduced to the restricted Miller form
A + B cos ψ . However, for the special case α = 1 the quartic equation (3.28), with
J ≡ J (ψ, 1, w), is expressible in terms of a product of two polynomials of degrees 1 and 3 in
the variable x. The linear factor yields the simple result

x3 ≡ x3(ψ, 1, w) = 27

4w3
(w + cos ψ) . (3.32)

We see from (3.32) that the coefficients {ek(ψ, α) : k = 2, 3, . . .} in expansion (3.31) must all
be zero when α = 1. If equation (3.32) is substituted in (3.27) we obtain the important result

wF1,1(ψ, 1, w) = 2F1

[
1

3
,

2

3
; 1; 27

4w3
(w + cos ψ)

]
. (3.33)
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Formula (3.33) is valid in a region D3(ψ) of the cut w plane which includes the neighbourhood
|w| > 3. The boundary of D3(ψ) lies inside the circle |w| = 3 and consists of the point set
{w : x3(ψ, 1, w) ∈ (�3,∞)}, where

�3 ≡ �3(ψ) = Max

[
1,

1

cos2 ψ

]
. (3.34)

For the special case ψ = π
2 formula (3.33) is valid throughout the w plane provided that a cut

is made along the real axis from w = − 3
√

3
2 to w = 3

√
3

2 .
It follows from (3.1) and (3.33) that

wG(n, n, n; 1, w) = 1

π

∫ π

0
2F1

[
1

3
,

2

3
; 1; 27

4w3
(w + cos ψ)

]
cos(nψ) dψ. (3.35)

We now apply (2.26) with t = 1
3 to the integral in (3.35). This procedure leads to the required

product form

wG(n, n, n; 1, w) =
(

1
3

)
n

(
2
3

)
n

(n!)2

[
w

3

(
1 −

√
1 − 9

w2

)]3n

2F1

(
1

3
,

2

3
; n + 1; ξ+

)

× 2F1

(
1

3
,

2

3
; n + 1; ξ−

)
(3.36)

where

ξ± ≡ ξ±(w) = 1

8w2

[
4w2 +

(
9 − 4w2

)√
1 − 9

w2
± 27

√
1 − 1

w2

]
. (3.37)

The region of validity D4 in the w plane for (3.36) has been determined by Joyce and Delves
(2004, p 3664). A detailed discussion of the analytic and asymptotic properties of (3.36) is
also given in this paper.

Finally, we note that formula (2.11) for wF2,1(ψ, α,w) can also be established by applying
the method of Cayley (1889, 1895) to the integral (2.5). This alternative procedure involves
the transformation (Goursat 1881, p S.138, equation (118))

2F1

[
1

12
,

5

12
; 1; 27x2(1 − x)

(4 − 3x)3

]
=
(

1 − 3x

4

) 1
4

2F1

(
1

4
,

3

4
; 1; x

)
. (3.38)

4. Recurrence relations

In this last section we shall use the Fourier generating functions to derive recurrence relations
for G(2n, n, n;α,w) and G(n, n, n;α,w).

4.1. Recurrence relation for G(2n, n, n;α,w)

In the first stage of the analysis we write the Fourier generating function (2.11) in the form

wF2,1 =
(

w2

w2 + 4 − α2

) 1
2

2F1

(
1

4
,

3

4
; 1; z

)
(4.1)

where

z = 4
[
2
(
2w2 − α2

)
+ α2

(
	 + 	−1

)]
(
w2 + 4 − α2

)2 (4.2)
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and 	 = exp(iψ). We can now use this formula and the standard hypergeometric differential
equation (Erdélyi et al 1953, p 56, equation (1)) to show that

P0(α,w;	)
∂2F2,1

∂	2
+ P1(α,w;	)

∂F2,1

∂	
+ P2(α,w;	)F2,1 = 0 (4.3)

where

P0(α,w;	) = 4	2
(
	2 − 1

)[
α2	2 + 2

(
2w2 − α2

)
	 + α2

]
×
{

4α2	2 −
[
w4 − 2w2

(
α2 + 4

)
+
(
α4 + 16

)]
	 + 4α2

}
(4.4)

P1(α,w;	) = 4	2
{

8α4	5 − α2
(
w2 + 4w − α2 − 4

)(
w2 − 4w − α2 − 4

)
× (	4 − 4	2 − 1

)− 16α4	3 + 4
[
2w6 − (5α2 + 16

)
w4

+ 4
(
α4 + 2α2 + 8

)
w2 − α2

(
α4 + 6α2 + 16

)]
	
}

(4.5)

P2(α,w;	) = 3α4
(
	2 − 1

)3
. (4.6)

Next we substitute the generating function series (1.4) in the differential equation (4.3). In
this manner we obtain the following seven-term recurrence relation:

α4(4n + 9)(4n + 11)G
(1)
n+3 − α4(4n − 9)(4n − 11)G

(1)
n−3

− 4α2
(
w2 + 4w − α2 − 4

)(
w2 − 4w − α2 − 4

)
×
[
(n + 2)2G

(1)
n+2 + 4nG(1)

n − (n − 2)2G
(1)
n−2

]
− 8w2

[
2w4 − (5α2 + 16

)
w2 + 4

(
α4 + 2α2 + 8

)]
×
[
(n + 1)(n + 2)G

(1)
n+1 − (n − 1)(n − 2)G

(1)
n−1

]
+ α2

[
8
(
α4 + 2α2 + 16

)
n2 +

(
16α4 + 87α2 + 256

)](
G

(1)
n+1 − G

(1)
n−1

)
+ 8α2n

(
3α4 + 14α2 + 48

)(
G

(1)
n+1 + G

(1)
n−1

) = 0 (4.7)

where G(1)
n ≡ G(2n, n, n;α,w) and n = 0,±1,±2, . . .. Delves and Joyce (2006, p 4143)

have also given a five-term relation for G(1)
n which was derived by extending the methods

developed by Iwata (1979). This shorter relation is of degree 3 in the variable n.

4.2. Recurrence relation for G(n, n, n;α,w)

We can derive a recurrence relation for the diagonal Green function G(n, n, n;α,w)

by applying the method described in the previous subsection to the Fourier generating
function (3.21). A complicated calculation eventually leads to the following eleven-term
relation:

9α4w
[
81n
(
G

(2)

n+5 + G
(2)

n−5

)
+
(
9n2 + 182

)(
G

(2)

n+5 − G
(2)

n−5

)]
− 12α3n

[
16w4 − 9

(
22α2 + 23

)
w2 + 54

(
α2 − 1

)2](
G

(2)
n+4 + G

(2)
n−4

)
− 12α3

{
n2
[
2w4 − 27

(
α2 + 1

)
w2 + 9

(
α2 − 1

)2]
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+
[
32w4 − 2

(
182α2 + 199

)
w2 + 77

(
α2 − 1

)2]}(
G

(2)
n+4 − G

(2)
n−4

)
−α2wn

[
16
(
31α2 + 26

)
w4 − 8

(
284α4 + 863α2 + 311

)
w2

+ 3
(
592α6 − 696α4 − 951α2 + 488

)](
G

(2)
n+3 + G

(2)
n−3

)
−α2w

{
n2
[
16
(
5α2 + 4

)
w4 − 8

(
52α4 + 139α2 + 52

)
w2

+ 3
(
112α6 − 120α4 − 177α2 + 104

)]
+ 6
[
16
(
8α2 + 7

)
w4

− 8
(
65α4 + 223α2 + 78

)
w2 +

(
392α6 − 508α4 − 643α2 + 276

)]}
× (G(2)

n+3 − G
(2)
n−3

)− 16αn
[
4
(
4α4 + 15α2 + 2

)
w6

− (48α6 + 296α4 + 326α2 + 41
)
w4 + 3

(
16α8 + 52α6 − 225α4 − 13α2 + 8

)
w2

− (α2 − 1
)2(

16α6 − 48α4 − 33α2 − 16
)](

G
(2)
n+2 + G

(2)
n−2

)
− 8α

{
n2
[
4
(
2α4 + 6α2 + 1

)
w6 − 2

(
12α6 + 68α4 + 68α2 + 11

)
w4

+ 3
(
8α8 + 24α6 − 93α4 + α2 + 6

)
w2 − (α2 − 1

)2(
8α6 − 24α4 − 3α2 − 8

)]
+
[
16
(
2α4 + 9α2 + 1

)
w6 − 4

(
24α6 + 160α4 + 190α2 + 19

)
w4

+ 6
(
16α8 + 56α6 − 262α4 − 27α2 + 4

)
w2

− (α2 − 1
)2(

32α6 − 96α4 − 105α2 − 32
)]}(

G
(2)
n+2 − G

(2)
n−2

)
− 2wn

[
96α2

(
2α2 + 1

)
w6 − 8

(
72α6 + 67α4 + 56α2 − 3

)
w4

+ 4
(
144α8 − 412α6 − 1129α4 − 25α2 − 36

)
w2

− 3
(
64α10 − 696α8 + 1012α6 − 13α4 − 60α2 − 64

)](
G

(2)
n+1 + G

(2)
n−1

)
− 2w

{
n2
[
32α2

(
2α2 + 1

)
w6 − 8

(
24α6 + 27α4 + 22α2 − 1

)
w4

+ 4
(
48α8 − 76α6 − 247α4 + 44α2 − 12

)
w2

− (64α10 − 488α8 + 820α6 − 415α4 + 164α2 − 64
)]

+ 2
[
32α2

(
2α2 + 1

)
w6 − 8

(
24α6 + 20α4 + 17α2 − 1

)
w4

+ 12
(
16α8 − 53α6 − 147α4 − 10α2 − 4

)
w2

− (64α10 − 764α8 + 1090α6 + 107α4 − 118α2 − 64
)]}(

G
(2)
n+1 − G

(2)
n−1

)
− 8αn

[
16
(
α2 + 1

)(
2α2 + 1

)
w6 − 4

(
24α6 + 112α4 + 76α2 + 25

)
w4

+ 3
(
32α8 + 80α6 − 342α4 − 53α2 + 40

)
w2

− 2
(
α2 − 1

)2(
16α6 − 48α4 − 33α2 − 16

)]
G(2)

n = 0 (4.8)

where G(2)
n ≡ G(n, n, n;α,w) and n = 0,±1,±2, . . . .

The recurrence relation (4.8) has been used to investigate the detailed asymptotic
behaviour of G(n, n, n;α,w) as n → ∞. We hope to discuss this application in a future
publication.
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Appendix. Alternative evaluation of the integral In(t; A, B)

In this appendix we shall evaluate the integral

In(t;A,B) ≡ 1

π

∫ π

0
2F1(t, 1 − t; 1;A + B cos ψ) cos(nψ) dψ (A.1)

by generalizing the method of Iwata (1969). In the first stage of the analysis we apply the
Gaussian hypergeometric series to the 2F1 function in (A.1) and then integrate term by term.
This procedure gives

In(t;A,B) =
∞∑

m=0

(t)m(1 − t)m

(m!)2
�n,m(A,B) (A.2)

where

�n,m(A,B) ≡ 1

π

∫ π

0
(A + B cos ψ)m cos(nψ) dψ. (A.3)

We shall assume that |A| and |B| are sufficiently small to ensure the convergence of the
series (A.2).

Next the integral (A.3) is expressed in the alternative form

�n,m(A,B) ≡ ym
+

2π

∫ 2π

0
[1 + ρ exp(iψ)]m[1 + ρ exp(−iψ)]m cos(nψ) dψ (A.4)

where ρ = (y−/y+)
1/2 and

y± ≡ y±(A,B) = 1

2

(
A ±

√
A2 − B2

)
. (A.5)

The integral (A.4) can be readily evaluated using the method of residues. Hence, we find that

�n,m(A,B) = ρnym
+

m−n∑
j=0

(
m

j

)(
m

n + j

)
ρ2j . (A.6)

We now substitute (A.6) in (A.2) and interchange the order of the two summations. After
some algebraic simplifications we eventually obtain

In(t;A,B) = (t)n(1 − t)n

(n!)2
(y+y−)n/2F4(n + t, n + 1 − t; n + 1, n + 1; y+, y−) (A.7)

where F4(α, β; γ, γ ′; x, y) is an Appell hypergeometric series of two variables (see Erdélyi
et al (1953), p 224). From the work of Bailey (1933, 1934) it is known that

F4[α, β; γ, α + β − γ + 1; x(1 − y), y(1 − x)] = 2F1(α, β; γ ; x) 2F1(α, β;α +β − γ + 1; y).

(A.8)

This result is valid inside simply-connected regions surrounding x = 0, y = 0, for which

|x(1 − y)| 1
2 + |y(1 − x)| 1

2 < 1. (A.9)

The application of (A.8) to the F4 series in (A.7) leads to the product form

In(t;A,B) = (t)n(1 − t)n

(n!)2
(y+y−)n/2

2F1(n + t, n + 1 − t; n + 1;ϑ+)

× 2F1(n + t, n + 1 − t; n + 1;ϑ−) (A.10)

where ϑ± ≡ ϑ±(A,B) are defined in (2.25).
Finally, we use the standard formula (Erdélyi et al 1953, p 105, equation (2))

2F1(n + t, n + 1 − t; n + 1;ϑ) = (1 − ϑ)−n
2F1(t, 1 − t; n + 1;ϑ) (A.11)
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to write (A.10) in the required form

In(t;A,B) = (t)n(1 − t)n

(n!)2

[
1

2B

(√
1 − A − B − √

1 − A + B
)2
]n

× 2F1(t, 1 − t; n + 1;ϑ+) 2F1(t, 1 − t; n + 1;ϑ−). (A.12)

This result is in agreement with (2.26) which was derived from the Lie group addition
formula (2.15).

The evaluation of In(t;A,B) can be simplified when B = A. For this special case, we
find that

�n,m(A,A) = (2m)!

(n + m)!(m − n)!

(
A

2

)m

(A.13)

and (A.7) reduces to

In(t;A,A) = (t)n(1 − t)n

(n!)2

(
A

2

)n

3F2

(
n + t, n + 1 − t, n +

1

2
; n + 1, 2n + 1; 2A

)
. (A.14)

We can now use the theorem of Clausen (1828)

3F2

(
2α, 2β, α + β;α + β +

1

2
, 2α + 2β; z

)
=
[

2F1

(
α, β;α + β +

1

2
; z

)]2

(A.15)

to write (A.14) in the form

In(t;A,A) = (t)n(1 − t)n

(n!)2

(
A

2

)n {
2F1

[
1

2
(n + t),

1

2
(n + 1 − t); n + 1; 2A

]}2

. (A.16)

The application of the transformation formula (3.24) to the 2F1 in (A.16) gives

In(t;A,A) = (t)n(1 − t)n

(n!)2

(
A

2

)n [
2F1

(
n + t, n + 1 − t; n + 1; 1

2
− 1

2

√
1 − 2A

)]2

.

(A.17)

This result is in agreement with (A.10) when B = A.
Finally, we note that this alternative method can also be used for the case B = −A because

�n,m(A,−A) = (−1)n�n,m(A,A). (A.18)
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